Modèle sphéroïdal

Conclusion générale

1/58

Caractérisation du rayonnement acoustique d'un haut-parleur monté sur une enceinte parallélépipédique.

Application à une barre de son

Thèse de doctorat présentée par Vincent Roggerone.

$25 \ {\rm Janvier} \ 2018$

Jury : Alain BERRY Didier CASSEREAU Philippe HERZOG Thomas HÉLIE Marc BONNET Étienne CORTEEL Xavier BOUTILLON rapporteur (GAUS) rapporteur (CNRS) examinateur (CNRS) examinateur (CNRS) examinateur (CNRS) co-directeur (L-Acoustics) directeur (CNRS)

ANR-COORD 008 EDISON 3D

Modèle de diffraction

Conclusion générale

L'A

Projet ANR Edison 3D Coord 008

- > But: démocratiser le son 3D.
- > Système de restitution 3D chez le particulier: barre de son.
- > Simuler, comprendre ...

Modèle de diffraction 000000000000000 lodèle sphéroïdal 00000000000000000000000000

Conclusion générale

Problématique

Méthodes de référence 00000000 Problématique Modèle de diffraction

lodèle sphéroïdal 00000000000000000000000000

Conclusion générale

Modèle de diffraction

fodèle sphéroïdal (0000000000000000000000000 (

Conclusion générale

Problématique

Basses fréquences

Modèle de diffraction

Conclusion générale

3/58

Basses fréquences

Hautes fréquences

25 Janvier 2018

Basses fréquences

Hautes fréquences

Baffle Step Response [Olson, 1950] (courbes qualitatives)

Hypothèses

Haut-parleurs

- Linéaires
- Rigides
- Pas de couplage interne et entre haut-parleurs
- Pas de modélisation électro-dynamique

Enceinte

• Rigide

Intervalle fréquentiel

• 200 Hz - 3 kHz

Table des matières

1 Méthodes de référence

- Mesures
- Éléments finis de frontière
- Résultats

2 Modèle de diffraction

- Principe
- Exemples et commentaires
- Résultats
- Discussion

3 Modèle sphéroïdal

- Méthode
- Résultats
- Discussion

4 Conclusion générale

- Résumé
- Perspectives

Modèle de diffraction 000000000000000 Iodèle sphéroïdal

Conclusion générale

Tables des matières

1 Méthodes de référence

- Mesures
- Éléments finis de frontière
- Résultats

2 Modèle de diffraction

- 3 Modèle sphéroïdal
- 4 Conclusion générale

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

Mesures: montage

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

Mesures: montage

Modèle de diffraction

10dèle sphéroïdal

Conclusion générale

Mesures: montage

Conclusion générale

L'XX

Mesures: traitement des données

• Sélection de la partie linéaire

Mesures traitement des données							
000000							

• Sélection de la partie linéaire

• Sélection de la partie linéaire

viesties. maiorinent des donnee.

- Sélection de la partie linéaire
- Suppression de l'influence de la salle
- Suppression des effets de bords (temporels et fréquentiels)

POLYTECHER

- Sélection de la partie linéaire
- Suppression de l'influence de la salle
- Suppression des effets de bords (temporels et fréquentiels)

Conclusion générale

L'A

Mesures: traitement des données

- Sélection de la partie linéaire
- Suppression de l'influence de la salle
- Suppression des effets de bords (temporels et fréquentiels)

≻Mesures valides au dessus de 500 Hz (comportement omnidirectionnel en dessous)

Modèle de diffraction 000000000000000 /lodèle sphéroïdal

Conclusion générale

POLYTECHNIQUE

Éléments finis de frontière

Basses fréquences

Hautes fréquences

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

POLYTECHNICH

Éléments finis de frontière

Basses fréquences

Hautes fréquences

Implémentation

- Code par Marc Bonnet ($E\!NST\!A\ ParisTech),$ implémenté en Matlab
- 10 éléments par longueur d'onde

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

POLYTISCHINIDE

Résultats: directivité normalisée

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

L'A

Résultats: directivité normalisée

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

POLYTISCHINIDE

Résultats: directivité normalisée

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

Discussion: réponse en fréquence dans l'axe

Baffle Step Response [Olson, 1950]

Modèle de diffraction 00000000000000 Modèle sphéroïdal

Conclusion générale

Discussion: réponse en fréquence dans l'axe

Baffle Step Response [Olson, 1950] (courbes qualitatives)

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

Tables des matières

2 Modèle de diffraction

- Principe
- Exemples et commentaires
- Résultats
- Discussion

3 Modèle sphéroïdal

4 Conclusion générale

Modèle sphéroïdal (0000000000000000000000000 (

Conclusion générale

Diffraction par une arête

 $\hat{p}_S = \hat{p}_{\text{direct}} + \hat{p}_{\text{reflec}} + \hat{p}_{\text{diffr}}$

d'après Calamia & Svensson

Conclusion générale

Diffraction par une arête

d'après Calamia & Svensson

 $\hat{p}_{S} = \hat{p}_{\text{direct}} + \hat{p}_{\text{reflec}} + \hat{p}_{\text{diffr}}$

$$\hat{p}_{\rm direct} = \frac{{\rm e}^{-jkr}}{r}$$

Si la source est sur la surface :

 $\hat{p}_{\text{reflec}} = \hat{p}_{\text{direct}}$

 $\hat{p}_S = 2\hat{p}_{\text{direct}} + \hat{p}_{\text{diffr}}$

Modèle sphéroïdal C 00000000000000000000000000 0

Conclusion générale

Diffraction par une arête

 $\hat{p}_{S} = \hat{p}_{\text{direct}} + \hat{p}_{\text{reflec}} + \hat{p}_{\text{diffr}}$

$$\hat{p}_{\text{direct}} = \frac{\mathrm{e}^{-jkr}}{r}$$

Si la source est sur la surface :

 $\hat{p}_{\text{reflec}} = \hat{p}_{\text{direct}}$

$$\hat{p}_S = 2\hat{p}_{\text{direct}} + \hat{p}_{\text{diffr}}$$

d'après Calamia & Svensson

$$\hat{p}_{\rm diffr}^{(1)} \propto -\int_z \frac{{\rm e}^{-jk[m(z)+l(z)]}}{m(z)l(z)}\beta(R,z,S){\rm d}z$$

Modèle sphéroïdal C 0000000000000000000000000 C

Conclusion générale

Diffraction par une arête

 $\hat{p}_S = \hat{p}_{\text{direct}} + \hat{p}_{\text{reflec}} + \hat{p}_{\text{diffr}}$

$$\hat{p}_{\text{direct}} = \frac{\mathrm{e}^{-jkr}}{r}$$

Si la source est sur la surface :

 $\hat{p}_{\text{reflec}} = \hat{p}_{\text{direct}}$

 $\hat{p}_S = 2\hat{p}_{\text{direct}} + \hat{p}_{\text{diffr}}$

d'après Calamia & Svensson

Méthodes de référei 00000000 Modèle de diffraction

Conclusion générale

Principe: analogue aux méthodes des rayons

D'après Asheim & Svensson [Asheim & Svensson, 2013]

Sommes des contributions:

ordre 0: champ direct $R \leftarrow S$

Modèle de diffraction

Conclusion générale

POLICIE MILICE

Principe: analogue aux méthodes des rayons

D'après Asheim & Svensson [Asheim & Svensson, 2013]

Sommes des contributions:

ordre 0: champ direct $R \leftarrow S$ ordre 1: champ provenant de la source et diffracté par les arêtes $R \leftarrow Z_1 \leftarrow S$ $R \leftarrow Z_2 \leftarrow S$

Principe: analogue aux méthodes des rayons

D'après Asheim & Svensson [Asheim & Svensson, 2013]

Sommes des contributions:

ordre 0: champ direct $\mathbf{R} \leftarrow \mathbf{S}$ ordre 1: champ provenant de la source et diffracté par les arêtes $\mathbf{R} \leftarrow Z_1 \leftarrow \mathbf{S}$ $\mathbf{R} \leftarrow Z_2 \leftarrow \mathbf{S}$

Modèle de diffraction

Conclusion générale

Principe: analogue aux méthodes des rayons

D'après Asheim & Svensson [Asheim & Svensson, 2013]

Sommes des contributions:

ordre 0: champ direct $\mathbf{R} \leftarrow \mathbf{S}$ ordre 1: champ provenant de la source et diffracté par les arêtes $\mathbf{R} \leftarrow Z_1 \leftarrow \mathbf{S}$ $\mathbf{R} \leftarrow Z_2 \leftarrow \mathbf{S}$ ordre n: champ provenant des arêtes diffracté par celles-ci order 2 : $\mathbf{R} \to Z_1 \to Z_2 \to \mathbf{S}$ order 2 : $\mathbf{R} \to Z_6 \to Z_2 \to \mathbf{S}$ order 3 : $\mathbb{R} \to Z_2 \to Z_9 \to Z_2 \to \mathbb{S}$

Modèle de diffraction

Conclusion générale

Principe: analogue aux méthodes des rayons

D'après Asheim & Svensson [Asheim & Svensson, 2013]

Sommes des contributions:

ordre 0: champ direct $R \leftarrow S$ ordre 1: champ provenant de la source et diffracté par les arêtes $R \leftarrow Z_1 \leftarrow S$ $R \leftarrow Z_2 \leftarrow S$... ordre n: champ provenant des arêtes diffracté par celles-ci order 2 : $R \rightarrow Z_1 \rightarrow Z_2 \rightarrow S$ order 2 : $R \rightarrow Z_6 \rightarrow Z_2 \rightarrow S$

order 3 : $\mathbf{R} \to Z_2 \to Z_9 \to Z_2 \to \mathbf{S}$
Modèle de diffraction

Conclusion générale

Principe: analogue aux méthodes des rayons

D'après Asheim & Svensson [Asheim & Svensson, 2013]

Sommes des contributions:

ordre 0: champ direct $R \leftarrow S$ ordre 1: champ provenant de la source et diffracté par les arêtes $R \leftarrow Z_1 \leftarrow S$ $R \leftarrow Z_2 \leftarrow S$... ordre n: champ provenant des arêtes diffracté par celles-ci order 2 : $R \rightarrow Z_1 \rightarrow Z_2 \rightarrow S$ order 2 : $R \rightarrow Z_6 \rightarrow Z_2 \rightarrow S$

order 3 : $\mathbf{R} \to Z_2 \to Z_9 \to Z_2 \to \mathbf{S}$

••

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

Formulation en opérateurs (ordre 2 et plus)

$$\begin{split} \hat{p}_{\rm diffr}^{(2)} &= \mathcal{I}_{\rm ext}\{q^{(1,0)}\}\\ \hat{p}_{\rm diffr}^{(3)} &= \mathcal{I}_{\rm ext}\{\mathcal{I}_+\{q^{(1,0)}\}\}\\ \hat{p}_{\rm diffr}^{(4)} &= \mathcal{I}_{\rm ext}\{\mathcal{I}_+(\mathcal{I}_+\{q^{(1,0)}\})\} \end{split}$$

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

Formulation en opérateurs (ordre 2 et plus)

$$\begin{split} \hat{p}_{\text{diffr}}^{(2)} &= \mathcal{I}_{\text{ext}}\{q^{(1,0)}\}\\ \hat{p}_{\text{diffr}}^{(3)} &= \mathcal{I}_{\text{ext}}\{\mathcal{I}_{+}\{q^{(1,0)}\}\}\\ \hat{p}_{\text{diffr}}^{(4)} &= \mathcal{I}_{\text{ext}}\{\mathcal{I}_{+}(\mathcal{I}_{+}\{q^{(1,0)}\})\} \end{split}$$

$$R \leftarrow Z \leftarrow Z \leftarrow Z \leftarrow \cdots \leftarrow Z \leftarrow Z \leftarrow Z \leftarrow Z \leftarrow S$$
$$q^{(2,1)} = \mathcal{I}_+ \{Z, q^{(1,0)}\}$$

 $\leftarrow:$ pressure radiated from source to edge

- $\leftarrow:$ pressure radiated from edge to edge
- $\leftarrow:$ pressure radiated from edge to exterior domain

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

L'A

Formulation en opérateurs (ordre 2 et plus)

$$\begin{split} \hat{p}_{\text{diffr}}^{(2)} &= \mathcal{I}_{\text{ext}} \{ q^{(1,0)} \} \\ \hat{p}_{\text{diffr}}^{(3)} &= \mathcal{I}_{\text{ext}} \{ \mathcal{I}_{+} \{ q^{(1,0)} \} \} \\ \hat{p}_{\text{diffr}}^{(4)} &= \mathcal{I}_{\text{ext}} \{ \mathcal{I}_{+} (\mathcal{I}_{+} \{ q^{(1,0)} \} \} \} \end{split}$$

 $\leftarrow:$ pressure radiated from source to edge

- $\leftarrow:$ pressure radiated from edge to edge
- $\leftarrow:$ pressure radiated from edge to exterior domain

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

Formulation en opérateurs (ordre 2 et plus)

$$\begin{split} \hat{p}_{\text{diffr}}^{(2)} &= \mathcal{I}_{\text{ext}}\{q^{(1,0)}\}\\ \hat{p}_{\text{diffr}}^{(3)} &= \mathcal{I}_{\text{ext}}\{\mathcal{I}_{+}\{q^{(1,0)}\}\}\\ \hat{p}_{\text{diffr}}^{(4)} &= \mathcal{I}_{\text{ext}}\{\mathcal{I}_{+}(\mathcal{I}_{+}\{q^{(1,0)}\}\}\} \end{split}$$

- $\leftarrow:$ pressure radiated from source to edge
- $\leftarrow:$ pressure radiated from edge to edge
- $\leftarrow:$ pressure radiated from edge to exterior domain

\succ Toujours un problème 2D

Modèle de diffraction

Modèle sphéroïdal 00000000000000000000000000

Conclusion générale

L'ANDER

18/58

Formulation en opérateurs (ordre 2 et plus)

$$\begin{split} \hat{p}_{\text{diffr}}^{(2)} &= \mathcal{I}_{\text{ext}} \{ q^{(1,0)} \} \\ \hat{p}_{\text{diffr}}^{(3)} &= \mathcal{I}_{\text{ext}} \{ \mathcal{I}_{+} \{ q^{(1,0)} \} \} \\ \hat{p}_{\text{diffr}}^{(4)} &= \mathcal{I}_{\text{ext}} \{ \mathcal{I}_{+} (\mathcal{I}_{+} \{ q^{(1,0)} \} \} \} \end{split}$$

- $\leftarrow:$ pressure radiated from source to edge
- $\leftarrow:$ pressure radiated from edge to edge
- $\leftarrow:$ pressure radiated from edge to exterior domain

$$\succ \mathcal{I}_{\text{ext}}$$
 Dépend fortement de R

Modèle de diffraction

10dèle sphéroïdal

Conclusion générale

Contributions

implémentation dans matlab

Modèle de diffraction

Iodèle sphéroïdal 000000000000000000000000000

Conclusion générale

• Théorie : interprétation de la formule de Svensson à l'aide de la méthode de Pierce.

implémentation dans matlab

Modèle de diffraction

Modèle sphéroïdal (0000000000000000000000000 (

Conclusion générale

Contributions

implémentation dans matlab

• Théorie : interprétation de la formule de Svensson à l'aide de la méthode de Pierce.

• Implémentation : duplication des résultats.

Notre implémentation:

$$\begin{split} \hat{p}_{\text{diffr}}^{(2)} &= \mathcal{I}_{\text{ext}}\{q^{(1,0)}\}\\ \hat{p}_{\text{diffr}}^{(3)} &= \mathcal{I}_{\text{ext}}\{\mathcal{I}_{+}\{q^{(1,0)}\}\}\\ \hat{p}_{\text{diffr}}^{(4)} &= \mathcal{I}_{\text{ext}}\{\mathcal{I}_{+}(\mathcal{I}_{+}\{q^{(1,0)}\})\} \end{split}$$

Implémentation de Svensson:

$$\begin{split} \hat{p}_{\text{diffr}}^{(2)} &= \mathcal{I}_{\text{prop}} \{ q^{(1,0)} \} \\ \hat{p}_{\text{diffr}}^{(3)} &= \mathcal{I}_{\text{prop}} \{ \mathcal{I} \{ q^{(1,0)} \} \} \\ \hat{p}_{\text{diffr}}^{(4)} &= \mathcal{I}_{\text{prop}} \{ \mathcal{I} (\mathcal{I} \{ q^{(1,0)} \} \} \} \end{split}$$

Modèle de diffraction

Conclusion générale

implémentation dans matlab

- Théorie : interprétation de la formule de Svensson à l'aide de la méthode de Pierce.
- Implémentation : duplication des résultats.
- Application : application aux enceintes rectangulaires.

Modèle de diffractior

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

20/58

Exemple: décomposition d'un champ omnidirectionnel

HP #3, frequency close to 0 Hz

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

L'A

Exemple: décomposition d'un champ directionnel

HP #3, frequency of 1100 Hz

60 éléments par longueur d'onde

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

POLITICOMINICAS

Exemple: décomposition d'un champ directionnel

HP #3, frequency of 1100 Hz

30 éléments par longueur d'onde

Modèle de diffraction

Modèle sphéroïdal 0000000000000000000000000000

Conclusion générale

POLYTECHNIQUE

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

POLYTECHNICH

Résultats: directivité normalisée

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

L'

Résultats: directivité normalisée

Modèle de diffraction

10dèle sphéroïdal

Conclusion général

Temps de calcul

		ESIE (1 kHz)	BEM (1kHz)
N_R	Opérateurs	80 x 8 x 7	$26 \ge 5 \ge 5$
$\forall N_R$	\mathcal{I}	3 s	
1	Order $0 + 1$	$< 1 {\rm s}$	$5\mathrm{s}$
	$\mathcal{I}_{ ext{prop}}$	$< 1 {\rm s}$	
72	Order $0 + 1$	< 1 s	$5\mathrm{s}$
	$\mathcal{I}_{ ext{prop}}$	1 s	
2664	Order $0+1$	1 s	$10\mathrm{s}$
	$\mathcal{I}_{ ext{prop}}$	20 s	

Implémentation de Svensson

$$\begin{split} \hat{p}_{\rm diffr}^{(2)} &= \mathcal{I}_{\rm prop}\{q^{(1,0)}\} \\ \hat{p}_{\rm diffr}^{(3)} &= \mathcal{I}_{\rm prop}\{\mathcal{I}\{q^{(1,0)}\}\} \\ \hat{p}_{\rm diffr}^{(4)} &= \mathcal{I}_{\rm prop}\{\mathcal{I}(\mathcal{I}\{q^{(1,0)}\})\} \end{split}$$

Modèle sphéroïdal

Conclusion générale

Temps de calcul

		ESIE (3kHz)	BEM (3 kHz)
N_R	Opérateurs	160 x 16 x 15	140x14x13
$\forall N_R$	I	$30\mathrm{s}$	
1	Order $0 + 1$	< 1 s	$60\mathrm{s}$
	$\mathcal{I}_{\mathrm{prop}}$	1 s	
72	Order $0 + 1$	1 s	$60\mathrm{s}$
	$\mathcal{I}_{\mathrm{prop}}$	2 s	
2664	Order $0+1$	2 s	80 s
	$\mathcal{I}_{ ext{prop}}$	60 s	

Implémentation de Svensson

$$\begin{split} \hat{p}_{\rm diffr}^{(2)} &= \mathcal{I}_{\rm prop}\{q^{(1,0)}\} \\ \hat{p}_{\rm diffr}^{(3)} &= \mathcal{I}_{\rm prop}\{\mathcal{I}\{q^{(1,0)}\}\} \\ \hat{p}_{\rm diffr}^{(4)} &= \mathcal{I}_{\rm prop}\{\mathcal{I}(\mathcal{I}\{q^{(1,0)}\})\} \end{split}$$

Modèle sphéroïdal

Conclusion générale

L'A

Résultats: position du lobe principal

script6.m script7.m script8.m Modèle sphéroïdal

Conclusion générale

POLITICCHINIQUE

Discussion sur le modèle de diffraction

Résumé

Modèle de diffraction

- Méthode valide pour calculer le son rayonné par une enceinte
- Particulièrement attractive en dessous de l'ordre 2

Implémentation

- Reproductibilité de la méthode de Svensson
- Comparaison avec le BEM

Perspectives

Travaux futur possibles

- Prédire le nombre d'éléments nécessaires par longueur d'onde pour obtenir une précision suffisante.
- Prédire l'ordre minimum nécessaire pour obtenir une précision suffisante.

Modèle sphéroïdal

Conclusion générale

POLYTECHNIQUE

Tables des matières

1 Méthodes de référence

2 Modèle de diffraction

3 Modèle sphéroïdal

- Méthode
- Résultats
- Discussion

4 Conclusion générale

Modèle de diffraction

Conclusion générale

POLITECHNIQUE

Modèle sphéroïdal: présentation

Coordonnées sphéroïdales oblongues

surfaces iso-coordonnées d'après Adelman

Modèle de diffraction

Iodèle sphéroïdal

Conclusion générale

POLITECHNIQUE

Modèle sphéroïdal: présentation

Équation de Helmholtz + excitation par un piston "carré"

$$p(\xi, \eta, \phi) \propto \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} I_{ml}(\xi, \eta, \phi)$$
$$R_{ml}(\xi) S_{ml}(\eta) e^{im\phi}$$

- $R_{\rm ml}$ et $S_{\rm ml}$: fonctions d'onde sphéroïdales.
- $\bullet \ m$ et l : ordre
- I : excitation par piston <u>"carré"</u>

Modèle de diffraction

Conclusion générale

L'A

enceinte sphéroïdale $\xi = Cte$

Modèle sphéroïdal: présentation

piston "carré" [Boisvert & Van Buren, 2002]

Équation de Helmholtz + excitation par un piston "carré"

$$p(\xi, \boldsymbol{\eta}, \boldsymbol{\phi}) \propto \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} I_{ml}(\xi, \boldsymbol{\eta}, \boldsymbol{\phi})$$
$$R_{ml}(\xi) S_{ml}(\boldsymbol{\eta}) e^{im\boldsymbol{\phi}}$$

- $R_{\rm ml}$ et $S_{\rm ml}$: fonctions d'onde sphéroïdales.
- $\bullet \ m$ et l : ordre
- I : excitation par piston <u>"carré"</u>

Modèle sphéroïdal: Expressions des fonctions d'onde sphéroïdales

[Flammer, 1957]

Exemple avec $R_{\rm ml}$: [Van Buren & Boisvert, 2007]

$$\begin{split} R_{ml}^{(2)}(c,\xi) &= \frac{(-1)^{(l-m)/2}(2m+1)}{2^{m+1}m(d_0)c[ml)} \\ &\times \int_{-1}^{+1} \left[\frac{(\xi^2-1)(1-\eta^2)}{(\xi^2+\eta^2-1)} \right]^{m/2} y_m c(\xi^2+\eta^2-1)^{1/2}] S_{ml}^{(1)}(c,\eta) d\eta, \quad l-m \text{ even} \\ R_{ml}^{(2)}(c,\xi) &= \frac{(-1)^{(l-m-1)/2}(2m+3)}{2^{m+1}m(d_1)c[ml)} \\ &\times \int_{-1}^{+1} \frac{[(\xi^2-1)(1-\eta^2)]^{m/2}}{(\xi^2+\eta^2-1)^{(m+1)/2}} \xi_l y_{m+1} c(\xi^2+\eta^2-1)^{1/2}] S_{ml}^{(1)}(c,\eta) d\eta, \quad l-m \text{ odd.} \end{split}$$

Modèle sphéroïdal: Expressions des fonctions d'onde sphéroïdales

[Flammer, 1957]

Exemple avec $R_{\rm ml}$: [Van Buren & Boisvert, 2007]

$$\begin{split} R_{ml}^{(2)}(c,\xi) &= \frac{(-1)^{(l-m)/2}(2m+1)}{2^{m+1}m d_0 |c|ml|} \\ &\times \int_{-1}^{+1} \left[\frac{(\xi^2 - 1)(1 - \eta^2)}{(\xi^2 + \eta^2 - 1)} \right]^{m/2} y_m c(\xi^2 + \eta^2 - 1)^{1/2}]S_{ml}^{(1)}(c,\eta) d\eta, \quad l-m \text{ even} \\ R_{ml}^{(2)}(c,\xi) &= \frac{(-1)^{(l-m-1)/2}(2m+3)}{2^{m+1}m d_1 |c|ml|} \\ &\times \int_{-1}^{+1} \frac{[(\xi^2 - 1)(1 - \eta^2)]^{m/2}}{(\xi^2 + \eta^2 - 1)^{(m+1)/2}} \xi_{\eta} y_{m+1} c(\xi^2 + \eta^2 - 1)^{1/2}]S_{ml}^{(1)}(c,\eta) d\eta, \quad l-m \text{ odd.} \end{split}$$

Très complexes, propriétés inexploitables \succ

Modèle de diffraction 000000000000000

Conclusion générale

Modèle sphéroïdal: méthode pour obtenir un piston circulaire

Intersection entre sphéroïde et boule

Modèle de diffraction 00000000000000

Conclusion générale

POLITICOMINICALE

Modèle sphéroïdal: Troncature

piston circulaire

Équation de Helmholtz + excitation par un piston circulaire

$$p(\xi, \eta, \phi) \propto \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} J_{ml}(\xi, \eta, \phi)$$
$$R_{ml}(\xi) S_{ml}(\eta) e^{im\phi}$$

- $R_{\rm ml}$ et $S_{\rm ml}$: fonctions d'onde sphéroïdales.
- m et l : ordre
- J_{ml} : excitation par piston circulaire

Modèle de diffraction 00000000000000

Conclusion générale

L'A

Modèle sphéroïdal: Troncature

piston circulaire

Troncature

• Ordre de troncature M, L ?

Équation de Helmholtz + excitation par un piston circulaire

$$p(\xi, \eta, \phi) \propto \sum_{m=0}^{M} \sum_{l=m}^{L} J_{ml}(\xi, \eta, \phi)$$
$$R_{ml}(\xi) S_{ml}(\eta) e^{im\phi}$$

- $R_{\rm ml}$ et $S_{\rm ml}$: fonctions d'onde sphéroïdales.
- $\bullet \ m$ et l : ordre
- J_{ml} : excitation par piston circulaire

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

Modèle sphérique: critère de troncature classique

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

POLITICHINIA

Modèle sphérique: critère de troncature classique

Expressions :

 $h_l(r)P_{\rm ml}(\cos\theta)e^{im\phi}$

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

POLYTECHNICK

Modèle sphérique: critère de troncature classique

Expression:

$$p \propto \sum_{l=0}^{L} \sum_{m=-l}^{l} I_{ml}$$
$$h_l(r) Y_{ml}(\theta, \phi)$$

25 Janvier 2018

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

L'

Modèle sphérique: critère de troncature classique

$$p \propto \sum_{l=0}^{L} \sum_{m=-l}^{l} I_{ml}$$
$$h_l(r) Y_{ml}(\theta, \phi)$$

L : nombre de lignes nodales

<u>Comparaison :</u> distance moyenne lignes nodales & longueur d'onde

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

L'

Modèle sphérique: critère de troncature classique

Expression:

L : nombre de lignes nodales

<u>Comparaison :</u> distance moyenne lignes nodales & longueur d'onde

 \succ Court-circuits acoustiques pour L > kr

Modèle de diffraction 00000000000000

Conclusion générale

Modèle sphéroïdal: critère de troncature

Expressions :

Modèle de diffraction 00000000000000

Conclusion générale

Modèle sphéroïdal: critère de troncature

Expression:

Modèle de diffraction 00000000000000

Conclusion générale

Modèle sphéroïdal: critère de troncature

Expression:

Modèle de diffraction 00000000000000

Conclusion générale

Modèle sphéroïdal: critère de troncature

Expression:

L : nb de lignes nodales L-M : nb lignes horizontales M : nb de lignes verticales

<u>Comparaison :</u> distance moyenne lignes nodales & longueur d'onde

Modèle de diffraction

Conclusion générale

Modèle sphéroïdal: critère de troncature

L : nb de lignes nodales L-M : nb lignes horizontales M : nb de lignes verticales

<u>Comparaison :</u> distance moyenne lignes nodales & longueur d'onde

≻Court-circuits acoustiques pour

$$\begin{cases} M > kb \\ M - L > k \frac{a+b}{2} \end{cases}$$

Modèle de diffraction

Conclusion générale

Critère de troncature: comparaison critère sphérique & sphéroïdal

Harmoniques :

 $Y_{ml}(\theta,\phi) = P_{ml}(\cos\theta)e^{im\phi}$

Harmoniques :

$$X_{ml}(\mathbf{k},\eta,\phi) = S_{ml}(\eta,\mathbf{k}) \mathrm{e}^{im\phi}$$

Critère :

Critère :

$$L>kr+\epsilon$$

où r est le rayon de la sphère

$$\begin{cases} M > kb + \epsilon_b \\ M - L > k\frac{a+b}{2} + \epsilon_a \end{cases}$$

où a et b sont le grand et petit demi-axe

Modèle de diffraction Modè 00000000000000 0000

Conclusion générale

POLITICOHNIQUE

Critère de troncature: vérification par facteur de rayonnement

Critère Sphérique :

$$\begin{cases} kb < M \\ kb < 2(M-L) - ka \end{cases}$$

Critère Sphéroïdal :

Conclusion générale

Critère de troncature: vérification par facteur de rayonnement

Critère Sphérique :

kr < L

 $\begin{cases} kb < M \\ kb < 2(M-L) - ka \end{cases}$

Critère Sphéroïdal :

Conclusion générale

L'

38/58

Critère de troncature: vérification par facteur de rayonnement

Critère Sphérique :

 $\left\{ \begin{array}{l} kb <\!\!M \\ kb <\!\!2(M-L)-ka \end{array} \right.$

Critère Sphéroïdal :

25 Janvier 2018

Conclusion générale

érale

38/58

Critère de troncature: vérification par facteur de rayonnement

Critère Sphérique :

kr < L

 $\begin{cases} kb < M \\ kb < 2(M-L) - ka \end{cases}$

Critère Sphéroïdal :

Modèle de diffraction 00000000000000

Conclusion générale

Modèle sphéroïdal: optimisation du sphéroïde

Équation de Helmholtz + excitation par un piston circulaire

Solution : [Boisvert & Van Buren, 2002]

$$p(\xi, \eta, \phi) \propto \sum_{m=0}^{M} \sum_{l=m}^{L}$$

 $J_{ml}(\xi,\eta,\phi)R_{ml}(\xi)S_{ml}(\eta)$

- R et S : fonctions d'onde sphéroïdales
- ${\scriptstyle \bullet } m$ et l : ordre
- *J* : excitation par piston circulaire

Modèle de diffraction 00000000000000

Conclusion générale

Modèle sphéroïdal: optimisation du sphéroïde

Équation de Helmholtz + excitation par un piston circulaire

Solution : [Boisvert & Van Buren, 2002]

$$p(\xi, \eta, \phi) \propto \sum_{m=0}^{M} \sum_{l=m}^{L}$$

 $J_{ml}(\xi,\eta,\phi)R_{ml}(\xi)S_{ml}(\eta)$

- R et S : fonctions d'onde sphéroïdales
- $\bullet \ m$ et l : ordre
- *J* : excitation par piston circulaire

Modèle de diffraction 00000000000000

Conclusion générale

Modèle sphéroïdal: optimisation du sphéroïde

Équation de Helmholtz + excitation par un piston circulaire

Solution : [Boisvert & Van Buren, 2002]

$$p(\xi,\eta,\phi) \propto \sum_{m=0}^{M} \sum_{l=m}^{L} J_{ml}(\xi,\eta,\phi) R_{ml}(\xi) S_{ml}(\eta)$$

• R et S : fonctions d'onde sphéroïdales

- m et l : ordre
- *J* : excitation par piston circulaire

Modèle de diffraction

Conclusion générale

L'

Modèle sphéroïdal: optimisation du sphéroïde

Différentes formes testées

Modèle de diffraction

Conclusion générale

Modèle sphéroïdal: optimisation du sphéroïde

Différentes formes testées

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

Modèle sphéroïdal: optimisation du sphéroïde

Différentes formes testées

➤ Résultats similaires

Modèle de diffraction

Aodèle sphéroïdal

Conclusion générale

POLITICOMINICAS

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

L'A

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

POLITICOMINICAS

Modèle de diffraction

Aodèle sphéroïdal

Conclusion générale

POLITICOMINICAS

Résultats: directivité

$\bigstar 3\,\mathrm{dB}$ manquant sur le lobe principal

Modèle de diffraction 00000000000000 Modèle sphéroïdal

Conclusion générale

Modèle de diffraction 00000000000000 Modèle sphéroïdal

Conclusion générale

POLITICOMINICAS

Modèle de diffraction 00000000000000 Modèle sphéroïdal

Conclusion générale

L'A

47/58

Modèle de diffraction

Conclusion générale

Discussion: réponse en fréquence dans l'axe

POLYTECHNIQUE

48/58

Modèle de diffraction

Modèle sphéroïdal 00000000000000000000000000000

Conclusion générale

POLYTECHNICAS

Discussion: puissance rayonnée

Modèle de diffraction

Modèle sphéroïdal 0000000000000000000000000000

Conclusion générale

L'A

50/58

Forme d'une source omnidirectionnelle

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

Discussion: réponse en fréquence dans l'axe

Baffle Step Response [Olson, 1950]

Modèle de diffraction

Modèle sphéroïdal 000000000000000000000000000

Conclusion générale

Discussion: réponse en fréquence dans l'axe

L ROULE ROUTECHNIQUE

Baffle Step Response [Olson, 1950]

		Modèle sphéroïdal 000000000000000000000000000	Conclusion générale 000
Temps de calcu	l		

Mean of calculation time for a set of 3 loudspeaker on a single enclosure

Modèle de diffraction 00000000000000 Modèle sphéroïdal 00000000000000000000000000 Conclusion générale

L'AND LEGGLE POLITECHNIQUE

Discussion sur le modèle sphéroïdal

$\begin{array}{l} {\rm Modèle\ sphéroïdal} \\ [200\,{\rm Hz},\,3\,{\rm kHz}] \end{array}$

- Le modèle sphéroïdal est proche du BEM en basse fréquence
- Le modèle sphéroïdal est plus rapide à calculer

Perspectives

Modèle de diffraction

Modèle sphéroïdal 0000000000000000000000000 Conclusion générale

L'AND LEGGLE POLITECHNIQUE

Discussion sur le modèle sphéroïdal

$\begin{array}{l} {\rm Modèle\ sphéroïdal} \\ [200\,{\rm Hz},\,3\,{\rm kHz}] \end{array}$

- Le modèle sphéroïdal est proche du BEM en basse fréquence
- Le modèle sphéroïdal est plus rapide à calculer

Remarques pour le design des enceintes

• Les enceintes sphéroïdales produisent des directivités moins chaotiques que les enceintes rectangulaires.

Perspectives

Modèle de diffraction 00000000000000 Modèle sphéroïdal

Conclusion générale

L'A

Discussion sur le modèle sphéroïdal

Résumés

Modèle sphéroïdal [200 Hz, 3 kHz]

- Le modèle sphéroïdal est proche du BEM en basse fréquence
- Le modèle sphéroïdal est plus rapide à calculer

Remarques pour le design des enceintes

• Les enceintes sphéroïdales produisent des directivités moins chaotiques que les enceintes rectangulaires.

Perspectives

Travaux futurs possibles :

- Utiliser les directivités analytiques pour contrôler le rayonnement.
- Peut-on prédire la gamme de fréquence pour laquelle le modèle sphéroïdal est valide ?

Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

POLITECHNIQUE

Tables des matières

1 Méthodes de référence

- 2 Modèle de diffraction
- 3 Modèle sphéroïdal

4 Conclusion générale

- Résumé
- Perspectives

Modèle de diffraction 00000000000000 Iodèle sphéroïdal

Conclusion générale

Résumé

INFLUENCE DE LA FORME D'UNE BARRE DE SON SUR LE RAYONNEMENT

Modèle sphéroïdal

• Une forme arrondie un rayonnement plus régulier

Exploitation des méthodes

Modèle de diffraction 00000000000000 10dèle sphéroïdal

Conclusion générale

Résumé

INFLUENCE DE LA FORME D'UNE BARRE DE SON SUR LE RAYONNEMENT

Modèle sphéroïdal

• Une forme arrondie un rayonnement plus régulier

Modèle de diffraction

- La diffraction par les arêtes peut être responsable d'une variation de 3 dB
- La diffraction affecte la directivité des enceintes rectangulaires de manière contre-intuitive

Exploitation des méthodes

Modèle de diffraction 00000000000000 Iodèle sphéroïdal 0000000000000000000000000000 Conclusion générale

55/58

Résumé

INFLUENCE DE LA FORME D'UNE BARRE DE SON SUR LE RAYONNEMENT

Modèle sphéroïdal

• Une forme arrondie un rayonnement plus régulier

Modèle de diffraction

- La diffraction par les arêtes peut être responsable d'une variation de 3 dB
- La diffraction affecte la directivité des enceintes rectangulaires de manière contre-intuitive

Exploitation des méthodes

Modèle sphéroïdal

- Possibilité de capsule circulaire (par forcément "piston")
- Établissement d'un critère de troncature aussi puissant qu'en sphérique

Modèle de diffraction

Conclusion générale

Résumé

INFLUENCE DE LA FORME D'UNE BARRE DE SON SUR LE RAYONNEMENT

Modèle sphéroïdal

• Une forme arrondie un rayonnement plus régulier

Modèle de diffraction

- La diffraction par les arêtes peut être responsable d'une variation de 3 dB
- La diffraction affecte la directivité des enceintes rectangulaires de manière contre-intuitive

Exploitation des méthodes

Modèle sphéroïdal

- Possibilité de capsule circulaire (par forcément "piston")
- Établissement d'un critère de troncature aussi puissant qu'en sphérique

Modèle de diffraction

- Explication des phénomènes observés sur les mesures de directivité d'enceinte
- Duplications des résultats
- Mise en évidence de paramètres importants pour le calcul

Modèle de diffraction

lodèle sphéroïdal 00000000000000000000000000

Conclusion générale

Perspectives

Applicatives

Design des barres de son

- À quel point arrondir les arêtes est-il suffisant ?
- Influence de l'environnement (table, TV, mur, ...) ?

Fondamentales

25 Janvier 2018
Méthodes de référence 00000000 Modèle de diffraction

lodèle sphéroïdal 0000000000000000000000000

Conclusion générale

Perspectives

Applicatives

Design des barres de son

- À quel point arrondir les arêtes est-il suffisant ?
- Influence de l'environnement (table, TV, mur, ...) ?

Contrôle des barres de son

• Est-ce possible de contrôler avec les harmoniques sphéroïdales ?

Fondamentales

Méthodes de référence 00000000 Modèle de diffraction

odèle sphéroïdal 000000000000000000000000000

Conclusion générale

56/58

Perspectives

Applicatives

Design des barres de son

- À quel point arrondir les arêtes est-il suffisant ?
- Influence de l'environnement (table, TV, mur, ...) ?

Contrôle des barres de son

• Est-ce possible de contrôler avec les harmoniques sphéroïdales ?

Fondamentales

Forme d'un obstacle en acoustique

- Quand est-ce que deux objets de formes proches ont un rayonnement similaire ?
- Ondes rampantes et diffraction, réunification ?

Méthodes de référence 00000000 Modèle de diffraction

Modèle sphéroïdal

Conclusion générale

Remerciements

Merci pour votre attention

Bibliographie

58/58

Asheim, Andreas, & Svensson, U. Peter. 2013.

An integral equation formulation for the diffraction from convex plates and polyhedra.

Journal of Acoustical Society of America, 133(6), 3681–3692.

Boisvert, Jeffrey E, & Van Buren, A. L. 2002.

Acoustic radiation impedance of rectangular pistons on prolate spheroids. The Journal of the Acoustical Society of America, 111(2), 867–874.

Flammer, C. 1957.

Spheroidal Wave Functions. Monograph. Stanford University Press.

Olson, Harry F. 1950.

Direct Radiatior Loudspeaker Enclosures. Journal of Audio Engineering Society, October.

Van Buren, Arnie L, & Boisvert, Jeffrey E. 2007. Accurate calculation of the modified Mathieu Functions of integer order. *Quarterly of applied mathematics*, **LXV**(1), 1–23.